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Abstract – In this paper, a data-acquisition system was 

implemented in order to obtain data from the accelerometer, that 
outputs a voltage reading in reference to the gravitational force on 
earth, and from here obtain the angle of inclination in reference to 
the gravitational surface. This was done through converting the 
analog signal reading into a digital signal that can be processed by 
the PC from the Esduino, and finally be graphically represented 
through transmitting this data via serial communication. This 
paper goes through the certain steps in order to implement this 
system with high accuracy. In addition, components included in 
this system setup will be validated separately in order to ensure 
that the graphically reproduced signal seen through serial 
communication is accurate and correct. Finally, other applications 
of this system and improvements will be taken into consideration 
and further discussed.  

I. INTRODUCTION AND BACKGROUND 
N this society, technology is a part of our everyday lives, and 
the role and impact of technology continues to grow as 

humans become more dependent on technology throughout 
their daily routines. One of the most astounding inventions of 
the technology era however was the computer. Many people use 
computers for several applications, such as obtaining 
information from the web. In the past, acquiring data was done 
through a series of calculations done by hand. In addition, some 
applications required people to use alternate materials such as 
strings, papers, and sticks and make inferences on their data 
based on the movement or positioning of these materials.  

With the invention of the computer, acquiring data from 
experiments, sensors, and many other applications is not done 
by hand anymore. Instead, the computer is used for data 
acquisition processing from where analog signals or 
information from the real-world is converted into quantitative 
data that the computer outputs to the user. Therefore, 
technology has significantly helped in areas such as research 
and development as now, we can obtain instant data and easily 
manipulate or perform further analysis. 

Internally, the process of converting the analog signal to a 
digital signal through an analog-to-digital converter is more 
complicated and can be prone to several errors or deviations. 
This is due to the computer itself not acquiring the data, and 
simply acting as a means to process the data as the computer 
acts as an embedded system.  

A popular example of a data-acquisition system to obtain 
analog data in the aerospace industry is with strain gauge 
measurements. Typically, strain gauges are used to observe the 
stress and strain forces that the plane feels in a particular section 
of the aircraft, such as the fuselage. These voltage readings are 

converted into digital signals by the computer, from where the 
user can perform from post-processing calculations to get an 
accurate reading of the stress and strain to ensure the safety of 
the aircraft in extreme weather conditions in the air. Many other 
sensors work the same way and are used across various 
industries, such as pressure sensors, temperature sensors, light 
sensors, ultrasonic sensors, and many more.  

In this paper’s specific application, the data-acquisition 
system consists of an accelerometer responsible for outputting 
a voltage reading that is processed by the computer through the 
Esduino microcontroller to give the user data of the angle of 
inclination of the device in reference to the gravitational force. 

A common example where this application is important is in 
mobile devices, as our cell phones now have the feature to 
detect the inclination of the device to rotate the screen to meet 
the user’s point of view.  

The question is, how is this done to always meet the user’s 
expectation without failure? This paper goes through the 
process of setting up and testing this application, and discusses 
relevant concepts related to this design. In section 2, a system 
overview of the data-acquisition system will be given, outlining 
specifications, key terms and specific components and their 
operations in the system. In section 3, our design will be 
implemented, and results will be outlined. Lastly, in section 4, 
we will verify our results to confirm that the readings observed 
are correct, and comment on how to improve performance and 
reduce our deviations.   

II. SYSTEM OVERVIEW 
As previously stated, the purpose of this project is to design 

a data-acquisition system capable of outputting the inclination 
angle of the device. The transducer, being the accelerometer, 
will be used to output the angle reading as a voltage value to the 
A/D convertor that will finally convert the analog signal to a 
digital signal that will be read by the computer. From here, the 
computer will graphically display the result of the angle through 
serial communication. This relationship and system overview 
are shown in figure 1.  

 

 
Figure 1: Breakdown Process of Data-Acquisition System 

A. Input 
The input to this system is the reading of the device known as 

the ADXL337 accelerometer (as shown in figure 2), which is 
done through the accelerometer measuring the acceleration   
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forces. In this project, the acceleration force is referring to the 
gravitational force that the accelerometer reads. This force is a 
dynamic force, as this reading is obtained through moving the 
accelerometer.  

 
Figure 2: ADXL337 Accelerometer 

 
Whenever an input from the real-world is taken or sensed, a 

transducer is required to convert this signal into an electrical 
signal. However, in this scenario the transducer’s conversion is 
done by using the accelerometer as we are only measuring the 
output signal, being the voltage reading. Therefore, we do not 
need to use a transducer in this experimental setup.  

 

 
Figure 3: Output Acceleration vs. Angle of Inclination for Single Axis 

Inclination Sensing  
 

 Due to the accelerometer outputting a voltage value and the 
inclination angle being done digitally, the acceleration is 
presented as a constant acceleration that is obtained through an 
ADC. The output resolution is the output acceleration, and the 
graph represents that the resolution is best around 0 degrees and 
is very sensitive or worst at 90 degrees. This difference in 
sensitivity is crucial to take into account when obtaining the 
inclination angle as this can result in serious deviation in our 
results if not accounted for.  
 The approximation method used to convert the analog signal 
into a digital signal is the successive approximation method. 
This method simply uses a reference voltage and either 
multiples by 0.5 if the value is greater than the desired voltage 
or multiplies by 1.5 if the value is lower than the desired 
voltage. This process continues for a certain amount of cycles 
that is dependent on the number of bits of your microcontroller 
device, that will be explained in the next section. This method 
is more accurate and faster in comparison to the linear 
approximation method, which uses different ranges of values to 
approximate the angle.    
 The range of the potential voltage values that the 
accelerometer can output are shown on the datasheet to be 
1.35V to 2.0V. This represents a range between -90 to 90 

degrees. However, in our application, we will only be finding 
values between 0 to 90 degrees. We will also see that the 
experimental values of the output voltages may potentially 
differ from the theoretical values given on the ADSXL337 
datasheet. The transfer function between the ADC voltage 
values and the angle for the accelerometer is given in figure 4 
shown below. 
 

  
Figure 4: Relationship Between ADC Voltages and Angle Values 

B. Esduino: Hardware Overview 
The microcontroller chosen in this project is the 

EsduinoXtreme microcontroller, which we will refer to as 
simply the Esduino, shown in figure 5.  

 

 
Figure 5: Esduino Xtreme Microcontroller 

 
The Esduino is a 16-bit microcontroller that is a part of the 

9S12GA240 family, with EPROM, SRAM and flash memory 
capabilities. In addition, the Esduino has 16-bit enhanced timer 
with input capture, output capture, counter, and pulse 
accumulator options that will be used in this project. Also, the 
Esduino has a serial peripheral interface (SPI), serial 
communication interface (SCI), controlled area network (CAN) 
communication subsystems, and multi-channel analog-to-
digital (ADC) conversion capabilities. The ADC capabilities is 
a very crucial aspect of this experiment, as we will explore later. 
The Esduino microcontroller contains several other features and 
capabilities as shown in figure 6. The Esduino microcontroller 
is available for purchase for an average price of USD $62.   
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Figure 6: Esduino Datasheet and Features Overview 

 
  The bus speed refers to the speed of number of pulses per 
second generated by the internal oscillator. This speed 
represents the speed at which the transmission of data can be 
performed, which can also be described as the number of clock 
cycles the Esduino can perform. By default, the Esduino clock 
speed is 6.25 MHz although this bus speed can be modified, as 
we will explore more later in the report. 
 The Esduino operates at either 3.3V or 5V, which depends 
on the user’s preference or application. This voltage is jumper 
selectable on the microcontroller.  
 As said before, there are 3 different memory resources 
available on the Esduino. The first is electrically erasable 
programmable read only memory (EEPROM) with a total of 4K 
bytes available. The second is static random-access memory 
(SRAM), with 11K bytes available to use. Thirdly, there is 
240K bytes of flash memory. 
 There is a total of 12 ADC pins, representing 12 locations on 
the microcontroller where the analog-to-digital conversion can 
take place. This can be done by using either 8, 10 or 12-bit 
resolution. These pins can also be configurated to general 
purpose input or output pins as digital signals, that will be done 
in this project as well. However, there may be slight errors in 
this conversion due to a phenomenon known as the quantization 
error, which is related to the ADC resolution, which we will 
discuss later. 
 The Esduino can be programmed using either C or assembly 
programming. This can be done using one of the Esduino’s 
integrated development environments (IDE), such as 
CodeWarrior, Cosmic Software’s cas12x and Dirk Heisswolf’s 
HW12. In this paper, we will focus on CodeWarrior as this IDE 
is considered the industry standard and is available for free. In 
addition, CodeWarrior offers interactive debugging options 
with the Esduino, hence a USBDMLT will be used, which is 
similar to a plug-in USB that connects between the Esduino and 
the PC being used.       

C. Esduino: Program 
The Esduino microcontroller is being used to perform the 

analog to digital conversion of the output voltage signal that we 

receive from the accelerometer. The program will help in 
automating this process so that the Esduino is constantly 
converting this signal and outputting the results through serial 
communication using the MATLAB program. There are also 
two push-buttons used as additives to the hardware. The first 
button is used to either start or stop the serial communication. 
On the other hand, the second button is used to change the mode 
or method of how the LED’s are displayed. The first mode will 
display the LED’s as a binary number. For example, the value 
63 will be represented as 0110 0011, with the 4 lower bits 
(0011) representing the one’s digit (3) and the higher 4 bits 
(0110) representing the ten’s digit, being 6. The second mode 
will display these LED’s as an increasing approximation. For 
example, the value 26 will be rounded to approximate 30 
degrees and will be displayed by the lower 3 LED’s turning on. 
In this mode, the one’s digit is always rounded either up or 
down. The buttons will be implemented through interrupts, 
which are used to break-away from the main code and help 
successfully operate the buttons function.  

There are several registers such as the ADC and TIMER 
registers that will be configured based on our design. The 
Esduino has pre-set values for several functions although this 
can be configured to match the user’s specifications. The 
flowchart shown in figure 7 helps visually show the flow of the 
program that will be programmed using C on CodeWarrior’s 
IDE.  

 

 
Figure 7: Main Code for Serial Communication on CodeWarrior 
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In addition, figure 8 shows the function of the interrupts 
which help in the operation of the buttons. Other channel and 
port configurations are also shown in figure 9 and 10. 
 

 
Figure 8: Interrupt Function Flowchart on CodeWarrior 

 

 
Figure 9: Delay Function of 1ms 

 

 
Figure 10: Clock Speed, ADC, TIMER and Port Configurations 

 
The assigned parameters for this project include an assigned 

ADC channel at AN5 (refer to figure 5 for exact location), a bus 
speed of 6MHz and a resolution of 10 bit. These requirements 
are summarized in table 1 below.  

The ADC channels are crucial in modifying the analog to 
digital conversion to satisfy our requirements. First of all, since 
our bit resolution is set to 10, ATDCTL1 = 0x2F. Secondly, due 
to ATDCTL2 = 0x88 simply right justifies this result. 
ATDCTL4 = 0x02 determines the pre-scalar frequency, which 
is set to 2 MHz as this value matches our bus speed of 6 MHz. 
Lastly, due to AN5 being our assigned ADC channel, 
ATDCTL5 = 0x25 to make this channel perform continuous 
conversions in obtaining data from the assigned pin.  

Due to the usage of interrupts for the buttons, the TIMER 
channels are also set up to catch the button signal at any time of 
the code’s operation. The TIMER channels as shown in figure 
10 allow us to capture this data and enable the interrupts.   
 

TABLE I: SPECIFIED EXPERIMENTAL PARAMETERS 
 

Specific Experimental Requirements 
Assigned ADC Channel AN5 

ADC Resolution 10-bit 
Bus Speed 6 MHz 

The bus speed requirement of 6 MHz refers to the Esduino 
clock speed of 6.25 MHz being modified. This is done through 
creating and modifying the SetClk() function as shown in figure 
9 above. First, CPMUPROT = 0 disables the clock speed write 
protections. CPMUOSC = 0x80 sets the oscillator frequency or 
clock reference of the Esduino to 8 MHz, and from here 
CPMUREFDIV = 0x41 divides this reference frequency by 2 
to get 4 MHz. From here, CPMUSYNR = 0x02 and 
CPMUPOSTDIV = 0x03 both multiply and divide the 
VCOCLK frequency in order to get the 6 MHz bus speed we 
want. To end this function, we set CPMUPROT = 1 to enable 
clock write protections.      

When observing the data sheet of the accelerometer, we see 
that the range of voltages that we can get from the 
accelerometer is approximately 1.35 V – 2.0V. On the other 
hand, the Esduino’s range of acceptable voltages is 0V to 3.3V. 
We will also see later that in specific; a 0-degree angle is 
represented by 1.65V while 1.35V to 1.65V represents -90 to 0 
degrees, and 1.65V to 2.0V represents 0 to 90 degrees.                                                                                        
The datasheet of the accelerometer also states that the frequency 
of operation is approximately 550 Hz. According to the Nyquist 
rate, the appropriate sampling frequency would be equal or 
greater than 2 times the input frequency. This relationship is 
shown in figure 11 below.   

𝑁𝑦𝑞𝑢𝑖𝑠𝑡	𝑅𝑎𝑡𝑒 ≥ 2 ∗ 𝐼𝑛𝑝𝑢𝑡	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
Figure 11: Nyquist Rate Relationship 

 
 When calculating for this value using an input frequency of 
approximately 550 Hz, we get a Nyquist frequency that must be 
equal or greater to 1100 Hz. Therefore, the sampling period can 
be calculated by doing the inverse of this value as T = 1/f, giving 
as a sampling time of 0.001 seconds.    
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 As stated before, the application used to serially 
communicate this data graphically is MATLAB. The rate at 
which serial communication of the data is performed is known 
as the baud rate, measured in bits per second. The baud rate is 
dependent on the bus speed of operation. Therefore, we will 
need to calculate and find an appropriate baud rate for serial 
communication of our data. The equation to obtain the baud 
divisor is shown in figure 12 below.  
 

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 = 𝐵𝑢𝑠𝐶𝑙𝑜𝑐𝑘/(16 ∗ 𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒) 
Figure 12: Baud Divisor Equation 

 
The goal is to use the highest baud rate possible that is lower 
than a 6% error margin. The different baud rates that we can use 
are 2400, 4800, 9600, 19200, 38400, 57600, and 115200. 
Calculations for a few of these baud rates are shown below.  
 

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000

16 ∗ 115200 = 3.255 
 

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000
16 ∗ 57600 = 6.510 

 

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000
16 ∗ 38400 = 9.766 

 
 

TABLE II: BAUD DIVISOR WITH BAUD RATES 
 

Baud Rate Baud Divisor 
2400 156.25 
4800 78.125 
9600 39.063 
19200 19.531 
38400 9.766 
57600 6.510 
115200 3.255 

 
The baud divisor can only be a whole number, hence must be 
rounded and recalculated to see if the given baud rate is less 
than 6% error from the actual theoretical baud rate. These 
calculations are done for the 3 highest baud rates below. As 
said before, we are trying to achieve the highest baud rate 
possible within the error margin.  
 

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
𝐵𝑢𝑠	𝑆𝑝𝑒𝑒𝑑

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟
16  

Figure 13: Baud Rate Calculation 
 

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

3
16 = 125000 

 

𝐸𝑟𝑟𝑜𝑟 =
125000 − 115200

115200 ∗ 100 = 8.51%	 
 

 

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

7
16 = 53571.4 

 

𝐸𝑟𝑟𝑜𝑟 =
53571 − 57600

57600 ∗ 100 = 6.99% 
 

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

6
16 = 62500 

 

𝐸𝑟𝑟𝑜𝑟 =
(62500 − 57600)

57600 ∗ 100 = 8.51%	 
 
 

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

10
16 = 37500 

 

𝐸𝑟𝑟𝑜𝑟 =
37500 − 38400

38400 ∗ 100 = 2.34% 
 

From the calculations above, we can see that a baud rate of 
38400 gives us an error of 2.34%, hence satisfies the error 
margin.  
 The code will be implemented differently based on what 
program is being used for the serial communication. This is due 
to each program using a different terminator. The terminator is 
an operator that tells the program where to separate certain 
digits into separate values. MATLAB uses a “CR” terminator 
to distinguish this operation. The bits containing the angle value 
that we calculate will be serially communicated and represented 
using our MATLAB program.     

D. Computer 
For this project, the MacBook Pro 2018 with touch bar. This 

laptop contains 512GB flash memory, in addition to 8GB 
memory capability. This laptop also has a 2.3 GHz Intel core i5 
processor. This laptop also has Boot Camp installer that was 
used to download Windows operating system in order to run the 
CodeWarrior IDE. This laptop contains 4 thunderbolt ports; 
therefore, an additional dongle was purchased in order to enable 
USB port connections to the laptop. This dongle can be 
purchased from Lention or Amazon for around $50 USD.  

As shown in figure 6, the code on CodeWarrior first starts 
with obtaining the value of the output voltage from the 
accelerometer. From here, the arc sine value is calculating using 
a reference zero voltage of 1.65V, a full-scale voltage of 3.3V, 
and a sensitivity factor of 0.3. Linear approximation is then 
used in order to calculate for the angle of inclination. From here, 
this value is serially communicated through the USB serial port 
identified as “COM3” which the MATLAB program reads. The 
serial port of the device by going into settings, and to device 
manager that shows the serial USB port that the Esduino is 
using. The flowchart for the program on MATLAB that 
connects to the serial port, obtains the angle value, and 
graphically displays this value is shown below in figure 14.  
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Figure 14: MATLAB Serial Communication Process Flowchart 

 
As shown, first the ‘instrfind’ MATLAB function is deleted 

in order to prohibit the return of any serial objects or 
instruments as an array. This is done as in the next line, we 
connect to our specific serial port at the specified baud rate and 
using the terminator option as discussed before, using the serial 
function. A ‘while’ loop is then formed, which simply is one of 
many forms to implement an infinite loop to continue the serial 
communication of the data until the user specifically specifies 
to end the transmission. The ‘while’ loop consists of an array 
that holds the value of the angle that is then plotted against the 
corresponding time. The data is sent serially one bit at a time 
over the communication port. This operation continuously 
occurs in real-time to give the user a graphical representation of 
the inclination of the accelerometer.   

III. EXPERIMENT AND RESULTS 
In this section, we will observe the data-acquisition system 

in operation and observe the role of all the components 
discussed earlier. Each of these components will be validated 
separately to ensure that the system is working correctly at each 
stage of the process. This will also help in ensuring that each 
component is working effectively and not resulting in any error 
or deviation in our experimental results. First, we will validate 
the input of the accelerometer to the system. From here, we will 
validate the clock speed, delay function, analog-to-digital 

convertor and the serial communication. After observing these 
separate functions, we will observe the entire system working 
to ensure the operation of the system.   

A. Input 
The first crucial component to validate is the input to the 

system, being the accelerometer. The voltage outputs must be 
accurate in order to obtain the correct inclination angle of the 
device. In order to validate the accelerometer, we need to ensure 
that there is no error with the internal function of the 
accelerometer. This is done through connecting the 
accelerometer to an oscilloscope to ensure that the output 
voltages are theoretically correct at certain values.  

First, the accelerometer is left at an inclination of zero 
degrees. At this point, the output voltage should theoretically 
be half of the full-scale voltage of the Esduino. In our scenario, 
this would mean that the accelerometer should output a voltage 
of 3.3/2 V = 1.65V, which is validated in figure 15 below.   
 

 
Figure 15: Oscilloscope Reading at 0 Degree Inclination 

 
 The exact reading that the oscilloscope is giving is 1.626V, 
which is close enough to our theoretical assumption, and we can 
attribute the slight deviation from 1.65V to experimental errors, 
such as other factors influencing the accelerometers reading or 
the device not being at exactly 0 degrees with the gravitational 
surface when tested.  
 Next, we need to ensure that the range of output voltages lie 
within our assumptions that were derived from the datasheet of 
the accelerometer. This is done by testing the accelerometer at 
the maximum value, being 90 degrees. The oscilloscope 
reading is shown in figure 16 below. 
 

 
Figure 16: Oscilloscope Reading at 90 Degree Inclination 
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 The exact reading given by the oscilloscope is 1.974V at a 
90-degree inclination, which is very close to the expected value 
of 2.0V. Again, many experimental factors could have resulted 
in the slight deviation as mentioned before. Finally, a value 
within the range is tested at approximately 75 degrees, and the 
output voltage given corresponds to what we would expect the 
accelerometer to output. This is shown in figure 17 below. 
 

 
Figure 17: Approximation Oscilloscope Reading Within Range 

 
 From the oscilloscope readings shown and cross-referencing 
these values with the theoretical values given on the ADXL337 
datasheet, we can confirm that our accelerometer operates as 
expected. This also helps validate the input to the data-
acquisition system to confirm that the values are correct and 
within a small error margin.   

B. Clock Speed and Delay Loop  
As mentioned before, the assigned bus speed for our 

configuration is 6 MHz. The setClk() function as previously 
explained is used to configure the Esduino’s clock speed to our 
preference. In other words, we modify the Esduino’s default 
6.25 MHz clock speed to 6 MHz. To confirm that the clock 
speed works accurately as expected, an oscilloscope is used 
with only the delay function to ensure that the 1ms delay 
function gives us 1ms as we expect. The oscilloscope reading 
of the 1ms delay is shown in figure 18 below. 

 

 
Figure 18: Oscilloscope Reading of Delay Function 

 
 The oscilloscope reading shows a delay of 1.001 seconds 
when the 1ms delay function is run 1000 times. Therefore, this 
helps prove that the bus speed is configured correctly within 
CodeWarrior and in the setClk() function specifically. This is 
an important parameter to check as ensuring the delay function 
can help us set the sampling rate according to the Nyquist rate, 
and hence effectively sample the data of the inclination angle 
through serial communication.   

C. ADC System 
The ADC system is verified through observing the data 

plotted using MATLAB through the serial communication port. 
The Esduino uses the successive approximation method in 
order to convert the analog data from the accelerometer into a 
digital value. This method is limited based on the number of 
bits the ADC channel is configured at. Therefore, there will be 
some error in the conversion, known as the quantization error. 
The maximum quantization error can be calculated to ensure 
that the values we plot are within an acceptable error margin. 
The equation to calculate this error is shown in figure 19 and is 
also commonly referred to as the smallest step size or the ADC 
resolution between the theoretical and experimental results.   

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑢𝑙𝑙	𝑆𝑐𝑎𝑙𝑒	𝑉𝑜𝑙𝑡𝑎𝑔𝑒

2V  
Figure 19: Quantization Error Equation 

 
 N refers to the ADC resolution bits. In our experiment, we 
have a full-scale voltage of 0.348V, which is found by finding 
the difference between the maximum voltage value we found at 
90 degrees, and the minimum voltage value found at 0 degrees, 
which were found using the oscilloscope to be 1.974V and 
1.626V respectively. with an ADC resolution of 10 bits. 
Therefore, calculating for the maximum quantization error 
gives us: 
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	(%)

=
1.974 − 1.626

2WX ∗ 100 = 0.034% 
 
Therefore, the error margin for the ADC operation is 
approximately 0.32%. This value is very low in comparison to 
the other errors and deviations experienced in the experiment. 
However, this error is caused from the internal ADC method of 
the Esduino and hence cannot be improved any further without 
changing the requirements of the project, such as the resolution.  

D. Serial Communication 
The final component that requires validation to ensure that the 
entire system is working efficiently is the serial communication. 
This is done through an application called RealTerm, that 
connects to the serial communication port to ensure that the 
values of the angles are bring transmitted correctly. The 
transmission of data is also done in real-time, similar to 
MATLAB. RealTerm has the option of setting the port and 
effective baud rate, that we will first set to ‘COM3’ and a baud 
rate of 38400 respectively. The output on RealTerm read by the 
serial communication port is shown in figure 20 below.  
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Figure 20: RealTerm Output at Baud Rate of 38400 

 
 To ensure that we have selected the correct serial 
communication port, we will change the baud rate to 57600 and 
observe the output of the angle and see if this data is transmitted 
effectively. The RealTerm output reading of this is shown in 
figure 21 below. 
 

  
Figure 21: RealTerm Output at Baud Rate of 57600 

 
 From the output shown above, we can confirm that the baud 
rate that we have selected is correct. Using equations for the 
baud divisor and baud rate as shown in figures 11 and 12 above, 
we can calculate the baud divisor and baud rate error for each 
possible baud rate. The calculations are summarized and shown 
in table 3 below.  
 

TABLE III: BAUD RATE CALCULATIONS WITH % ERROR 
 

Baud Rate Baud Divisor 
(Rounded) 

Calculated 
Baud Rate 

Percent 
Error 

2400 156 2404 0.17% 
4800 78 4808 0.17% 
9600 39 9615 0.16% 
19200 20 18750 2.34% 
38400 10 37500 2.34% 
57600 7 53571 6.99% 
115200 3 125000 8.51% 

 
 The highest baud rate that is within a 6% error must be 
chosen for the serial communication. As calculated before, 

using a baud rate of 38400 is proven to be the effective rate of 
serial communication that reduces the error of the transmission 
of data compared to other baud rates. Therefore, from our 
calculations and the output observed on RealTerm, we can 
confirm that the serial communication is working effectively. 

E. Entire System  
Now that we have confirmed all our separate components and 

functions are working effectively with only slight deviations 
from our result, we can test the entire data-acquisition system 
as a whole. The hardware and setup of the entire system is 
shown in figure 22 below. In addition, the graphical 
representation of the angle is also shown in figure 23, proving 
that the serial communication of the inclination angle is 
working effectively.    
 

 
Figure 22: Setup and Configuration of Esduino and Components 

 

 
Figure 23: MATLAB Graphical Output of Inclination Angle 

IV. DISCUSSION 
As seen above, we have been able to produce a graphical 

representation of the inclination angles given in real time. In 
addition, we were also able to turn on the LED’s appropriately 
depending on the value of the angle. One simple way to confirm 
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that the values are consistent between CodeWarrior and 
MATLAB is to verify that the LED’s value of the angle 
corresponds to the value of the angle that MATLAB outputs 
graphically through the serial communication port. Another 
verification method can be to observe the inclination angle of 
the device with an external support, such as a protractor, and 
from here compare the angle observed in relation to the 
gravitational surface and what is plotted on MATLAB. Our 
validation results showed that there is potential for a slight 
deviation of approximately 3% from the value plotted, which 
must also be taken into account to ensure that the reproduced 
signal is correct.  

Using a function generator along with an oscilloscope is also 
an effective approach to determine if the reproduced signal is 
correct. This is done through setting the function generator to 
the correct peak to peak voltage that we determined 
experimentally (1.65V to 2V full scale voltage) and by 
connecting an oscilloscope to the output to determine if the 
inclination angle is correct compared to the output on 
MATLAB. However, from our MATLAB graph and 
component validations, we can confirm that the reproduced 
signal is correct with slight deviations that do not affect the 
signal greatly and are within a 5% error margin.  

We were able to overcome the Esduino microcontroller not 
having any trigonometric functions through a linear 
approximation approach using Desmos graphing software. 
First, an equation is used in order to approximate the arcsine 
value from the analog reading.  

 

𝑎𝑟𝑐𝑠𝑖𝑛𝑒 =
𝑣𝑜𝑙𝑡𝑎𝑔𝑒	𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∗ 3.3

2WX − 1.626
0.31  

Figure 25: Arcsine Approximation Equation 
 

In this equation, the 3.3 represents the operating voltage of 
3.3V, the 2^10 represents that the ADC is set at a 10-bit 
resolution. The 1.626 value represents the zero-voltage value of 
the accelerometer. Experimentally, as shown in section 3.1, we 
found this value to be 1.626V although theoretically this value 
is shown on the datasheet to be 1.65V. Lastly, the 0.31 
represents the sensitivity factor of the accelerometer, that can 
also be found on the datasheet to be 0.3, although 
experimentally we found that a valuer of 0.31 is more effective 
in accordance with the zero reference voltage we found. 
Therefore, the output voltage of the accelerometer can help us 
find the arcsine value of the angle using this equation. 

As said before, due to the Esduino not providing any 
trigonometric functions, we used a linear approximation 
approach in order to find the angle value. This was done by 
plotting the arcsine graph on Desmos, as shown below.  
 

 
Figure 25: Desmos Graph of Arcsine Function 

 
This graph shows a constant slope from (0,0) to (0.5,0.5). 

From here, the remainder of the function was split up into 
different sections depending on the slope of the line. Overall, 
this function was split into 9 different regions which each 
performed an approximation to get the value of the angle. For 
example, a constant slope of 1 was shown in the first region. 
Therefore, if the arcsine value was calculated to be 0.5, the 
value would be multiplied by 60 to obtain an inclination angle 
of 30 degrees. Cross referencing this value with the theoretical 
calculation, we see that we also get 30 degrees. Therefore, the 
linear approximation was found to be effective in giving us the 
correct angle based on the arcsine value calculated.   

As calculated earlier, the maximum quantization error is 
dependent on the experimental full-scale voltage calculated in 
addition to the ADC resolution, which in our case is 10 bits. 
This calculation is shown in section 3.3, and again shown 
below. We get a value of 0.034%, which shows that the 
maximum quantization error is very low and a small factor in 
deviating our angle results.  

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑢𝑙𝑙	𝑆𝑐𝑎𝑙𝑒	𝑉𝑜𝑙𝑡𝑎𝑔𝑒

2V  
 

𝑀𝑎𝑥	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	(%) =
1.974	 − 1.626

2WX ∗ 100
= 0.034% 

 
As previously calculated, the maximum baud rate that 

satisfied a 6% error margin must be chosen as the standard 
serial communication rate. By using the equations found in 
figure 12 and 13, we found that the best baud rate used based 
on our assigned bus speed of 6 MHz is 38400. The calculations 
and errors of all the potential baud rate selections are shown in 
table 3 in section 3.4. This serial communication rate was 
verified afterwards using the RealTerm application that further 
proved that our calculations were correct, as a baud rate greater 
than 38400 did not accurately communicate the value of the 
angle through serial communication.  

After reviewing the entire system, the primary limitation on 
the speed is the baud rate. As said before, the baud rate is the 
rate at which each bit is transmitted per second through serial 
communication. This was verified through performing a series 
of calculations to determine the standard serial communication 
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rate, which we found to be 38400. In addition, increasing this 
baud rate gives us an inaccurate output of the angle, which 
further proves that the baud rate we selected was appropriate. 
We found the selected baud rate to have a 2.3% error, which 
can also attribute to the limitation or reduction in speed of the 
serial communication.      

The Nyquist rate states that the sampling frequency should 
be at least equal to two times the input frequency from the 
accelerometer, which on the datasheet is shown to be 550 Hz. 
This relationship is also shown in figure 11 above. Therefore, 
the sampling frequency should be 1100 Hz or slightly greater. 
This is a crucial rule to follow when transmitting and plotting 
the data of the angle as or else, there may be aliasing in the 
signal. Aliasing may cause inaccurate results in the signal and 
causes different signals to be identified as the same, which can 
further increase errors or deviations. Due to the sampling rate, 
the maximum frequency that can be used as an input is 550 Hz. 
Any greater frequency from the input will cause aliasing and 
inaccurate data.   
 From this experiment, we can conclude that in general, 
analog input signals with sharp transitions are not accurately 
reproduced digitally. This is due to their being a lot of 
fluctuations of the rising and falling edge of the signal’s waves. 
We have also noticed that there are many factors that can 
contribute to potential errors or delays in the plotting of the 
graph. With sharp transitions, this can greatly affect the user’s 
interpretation of the data and can hence lead to further 
deviations in the data. Therefore, it is more accurate to recreate 
shapes such as a sine wave, in comparison to a sawtooth or 
square wave representation.    
 There are also many areas of improvement for the 
experiment. First, using interrupts is helpful in reducing the run-
time and processing time of the code which can be beneficial 
when plotting real-time data and transmitting data at the 
sampling rate. Secondly, the test apparatus can be improved by 
being more precise with the placement of the accelerometer in 
relation to the gravitational surface. It is very possible for the 
accelerometer to be slightly tilted upward or downward on the 
zero position, which can greatly affect results. As said before, 
the Esduino uses successive approximation in order to get the 
digital value from the ADC channel. This process is dependent 
on the ADC resolution. Therefore, increasing the ADC 
resolution can also help in getting more accurate values from 
the analog to digital conversion. In addition, following the 
Nyquist relationship helps in the sampling process of plotting 
the serially transmitted data, hence ensuring that this 
relationship is satisfied also greatly improves the results.  

V. CONCLUSION 
In this paper, we walked through how to create and 

implement a data-acquisition system responsible for 
graphically representing the inclination angle using an 
accelerometer through serial communication. The system first 
converted the analog signal of the acceleration into a digital 
signal using ADC conversion from the Esduino, which was then 
serially transmitted to MATLAB to plot the inclination angle 
value. The system worked efficiently, and we see that the angle 

of inclination is appropriately plotted in real-time, along with 
the corresponding LED’s to the value of the angle turning on. 
In addition, the buttons implemented through interrupts also 
efficiently toggled the serial communication and changed the 
display mode of the LED’s. As we continue to progress within 
technological innovations and performance testing, systems 
similar to the one implemented in this paper will be used more 
commonly for various applications. Transferring data between 
the real world and a PC is very efficient and with further 
findings, can be further improved to reduce any deviations in 
the process. Such a system can serve very useful in the real 
world, such as in the orientation of any technological device to 
meet the user’s point of view at any given time, or in real-time. 
We further tested our components and system using an 
oscilloscope to ensure the validity of the reproduced signal. As 
time progresses, these systems will be more common in our 
daily lives and both data-acquisition and ADC conversion can 
help to serve as a positive influence in the quality of our life and 
in the technological world.      
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