
Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 1

Abstract – In this paper, a data-acquisition system was

implemented in order to obtain data from the accelerometer, that
outputs a voltage reading in reference to the gravitational force on
earth, and from here obtain the angle of inclination in reference to
the gravitational surface. This was done through converting the
analog signal reading into a digital signal that can be processed by
the PC from the Esduino, and finally be graphically represented
through transmitting this data via serial communication. This
paper goes through the certain steps in order to implement this
system with high accuracy. In addition, components included in
this system setup will be validated separately in order to ensure
that the graphically reproduced signal seen through serial
communication is accurate and correct. Finally, other applications
of this system and improvements will be taken into consideration
and further discussed.

I. INTRODUCTION AND BACKGROUND
N this society, technology is a part of our everyday lives, and
the role and impact of technology continues to grow as

humans become more dependent on technology throughout
their daily routines. One of the most astounding inventions of
the technology era however was the computer. Many people use
computers for several applications, such as obtaining
information from the web. In the past, acquiring data was done
through a series of calculations done by hand. In addition, some
applications required people to use alternate materials such as
strings, papers, and sticks and make inferences on their data
based on the movement or positioning of these materials.

With the invention of the computer, acquiring data from
experiments, sensors, and many other applications is not done
by hand anymore. Instead, the computer is used for data
acquisition processing from where analog signals or
information from the real-world is converted into quantitative
data that the computer outputs to the user. Therefore,
technology has significantly helped in areas such as research
and development as now, we can obtain instant data and easily
manipulate or perform further analysis.

Internally, the process of converting the analog signal to a
digital signal through an analog-to-digital converter is more
complicated and can be prone to several errors or deviations.
This is due to the computer itself not acquiring the data, and
simply acting as a means to process the data as the computer
acts as an embedded system.

A popular example of a data-acquisition system to obtain
analog data in the aerospace industry is with strain gauge
measurements. Typically, strain gauges are used to observe the
stress and strain forces that the plane feels in a particular section
of the aircraft, such as the fuselage. These voltage readings are

converted into digital signals by the computer, from where the
user can perform from post-processing calculations to get an
accurate reading of the stress and strain to ensure the safety of
the aircraft in extreme weather conditions in the air. Many other
sensors work the same way and are used across various
industries, such as pressure sensors, temperature sensors, light
sensors, ultrasonic sensors, and many more.

In this paper’s specific application, the data-acquisition
system consists of an accelerometer responsible for outputting
a voltage reading that is processed by the computer through the
Esduino microcontroller to give the user data of the angle of
inclination of the device in reference to the gravitational force.

A common example where this application is important is in
mobile devices, as our cell phones now have the feature to
detect the inclination of the device to rotate the screen to meet
the user’s point of view.

The question is, how is this done to always meet the user’s
expectation without failure? This paper goes through the
process of setting up and testing this application, and discusses
relevant concepts related to this design. In section 2, a system
overview of the data-acquisition system will be given, outlining
specifications, key terms and specific components and their
operations in the system. In section 3, our design will be
implemented, and results will be outlined. Lastly, in section 4,
we will verify our results to confirm that the readings observed
are correct, and comment on how to improve performance and
reduce our deviations.

II. SYSTEM OVERVIEW
As previously stated, the purpose of this project is to design

a data-acquisition system capable of outputting the inclination
angle of the device. The transducer, being the accelerometer,
will be used to output the angle reading as a voltage value to the
A/D convertor that will finally convert the analog signal to a
digital signal that will be read by the computer. From here, the
computer will graphically display the result of the angle through
serial communication. This relationship and system overview
are shown in figure 1.

Figure 1: Breakdown Process of Data-Acquisition System

A. Input
The input to this system is the reading of the device known as

the ADXL337 accelerometer (as shown in figure 2), which is
done through the accelerometer measuring the acceleration

Data Acquisition Systems: The Revolutionary
Method of Processing & Analyzing Data

Maaz, Azam, azamm3, 400069421, L06

I

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 2

forces. In this project, the acceleration force is referring to the
gravitational force that the accelerometer reads. This force is a
dynamic force, as this reading is obtained through moving the
accelerometer.

Figure 2: ADXL337 Accelerometer

Whenever an input from the real-world is taken or sensed, a

transducer is required to convert this signal into an electrical
signal. However, in this scenario the transducer’s conversion is
done by using the accelerometer as we are only measuring the
output signal, being the voltage reading. Therefore, we do not
need to use a transducer in this experimental setup.

Figure 3: Output Acceleration vs. Angle of Inclination for Single Axis

Inclination Sensing

 Due to the accelerometer outputting a voltage value and the
inclination angle being done digitally, the acceleration is
presented as a constant acceleration that is obtained through an
ADC. The output resolution is the output acceleration, and the
graph represents that the resolution is best around 0 degrees and
is very sensitive or worst at 90 degrees. This difference in
sensitivity is crucial to take into account when obtaining the
inclination angle as this can result in serious deviation in our
results if not accounted for.
 The approximation method used to convert the analog signal
into a digital signal is the successive approximation method.
This method simply uses a reference voltage and either
multiples by 0.5 if the value is greater than the desired voltage
or multiplies by 1.5 if the value is lower than the desired
voltage. This process continues for a certain amount of cycles
that is dependent on the number of bits of your microcontroller
device, that will be explained in the next section. This method
is more accurate and faster in comparison to the linear
approximation method, which uses different ranges of values to
approximate the angle.
 The range of the potential voltage values that the
accelerometer can output are shown on the datasheet to be
1.35V to 2.0V. This represents a range between -90 to 90

degrees. However, in our application, we will only be finding
values between 0 to 90 degrees. We will also see that the
experimental values of the output voltages may potentially
differ from the theoretical values given on the ADSXL337
datasheet. The transfer function between the ADC voltage
values and the angle for the accelerometer is given in figure 4
shown below.

Figure 4: Relationship Between ADC Voltages and Angle Values

B. Esduino: Hardware Overview
The microcontroller chosen in this project is the

EsduinoXtreme microcontroller, which we will refer to as
simply the Esduino, shown in figure 5.

Figure 5: Esduino Xtreme Microcontroller

The Esduino is a 16-bit microcontroller that is a part of the

9S12GA240 family, with EPROM, SRAM and flash memory
capabilities. In addition, the Esduino has 16-bit enhanced timer
with input capture, output capture, counter, and pulse
accumulator options that will be used in this project. Also, the
Esduino has a serial peripheral interface (SPI), serial
communication interface (SCI), controlled area network (CAN)
communication subsystems, and multi-channel analog-to-
digital (ADC) conversion capabilities. The ADC capabilities is
a very crucial aspect of this experiment, as we will explore later.
The Esduino microcontroller contains several other features and
capabilities as shown in figure 6. The Esduino microcontroller
is available for purchase for an average price of USD $62.

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 3

Figure 6: Esduino Datasheet and Features Overview

 The bus speed refers to the speed of number of pulses per
second generated by the internal oscillator. This speed
represents the speed at which the transmission of data can be
performed, which can also be described as the number of clock
cycles the Esduino can perform. By default, the Esduino clock
speed is 6.25 MHz although this bus speed can be modified, as
we will explore more later in the report.
 The Esduino operates at either 3.3V or 5V, which depends
on the user’s preference or application. This voltage is jumper
selectable on the microcontroller.
 As said before, there are 3 different memory resources
available on the Esduino. The first is electrically erasable
programmable read only memory (EEPROM) with a total of 4K
bytes available. The second is static random-access memory
(SRAM), with 11K bytes available to use. Thirdly, there is
240K bytes of flash memory.
 There is a total of 12 ADC pins, representing 12 locations on
the microcontroller where the analog-to-digital conversion can
take place. This can be done by using either 8, 10 or 12-bit
resolution. These pins can also be configurated to general
purpose input or output pins as digital signals, that will be done
in this project as well. However, there may be slight errors in
this conversion due to a phenomenon known as the quantization
error, which is related to the ADC resolution, which we will
discuss later.
 The Esduino can be programmed using either C or assembly
programming. This can be done using one of the Esduino’s
integrated development environments (IDE), such as
CodeWarrior, Cosmic Software’s cas12x and Dirk Heisswolf’s
HW12. In this paper, we will focus on CodeWarrior as this IDE
is considered the industry standard and is available for free. In
addition, CodeWarrior offers interactive debugging options
with the Esduino, hence a USBDMLT will be used, which is
similar to a plug-in USB that connects between the Esduino and
the PC being used.

C. Esduino: Program
The Esduino microcontroller is being used to perform the

analog to digital conversion of the output voltage signal that we

receive from the accelerometer. The program will help in
automating this process so that the Esduino is constantly
converting this signal and outputting the results through serial
communication using the MATLAB program. There are also
two push-buttons used as additives to the hardware. The first
button is used to either start or stop the serial communication.
On the other hand, the second button is used to change the mode
or method of how the LED’s are displayed. The first mode will
display the LED’s as a binary number. For example, the value
63 will be represented as 0110 0011, with the 4 lower bits
(0011) representing the one’s digit (3) and the higher 4 bits
(0110) representing the ten’s digit, being 6. The second mode
will display these LED’s as an increasing approximation. For
example, the value 26 will be rounded to approximate 30
degrees and will be displayed by the lower 3 LED’s turning on.
In this mode, the one’s digit is always rounded either up or
down. The buttons will be implemented through interrupts,
which are used to break-away from the main code and help
successfully operate the buttons function.

There are several registers such as the ADC and TIMER
registers that will be configured based on our design. The
Esduino has pre-set values for several functions although this
can be configured to match the user’s specifications. The
flowchart shown in figure 7 helps visually show the flow of the
program that will be programmed using C on CodeWarrior’s
IDE.

Figure 7: Main Code for Serial Communication on CodeWarrior

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 4

In addition, figure 8 shows the function of the interrupts
which help in the operation of the buttons. Other channel and
port configurations are also shown in figure 9 and 10.

Figure 8: Interrupt Function Flowchart on CodeWarrior

Figure 9: Delay Function of 1ms

Figure 10: Clock Speed, ADC, TIMER and Port Configurations

The assigned parameters for this project include an assigned

ADC channel at AN5 (refer to figure 5 for exact location), a bus
speed of 6MHz and a resolution of 10 bit. These requirements
are summarized in table 1 below.

The ADC channels are crucial in modifying the analog to
digital conversion to satisfy our requirements. First of all, since
our bit resolution is set to 10, ATDCTL1 = 0x2F. Secondly, due
to ATDCTL2 = 0x88 simply right justifies this result.
ATDCTL4 = 0x02 determines the pre-scalar frequency, which
is set to 2 MHz as this value matches our bus speed of 6 MHz.
Lastly, due to AN5 being our assigned ADC channel,
ATDCTL5 = 0x25 to make this channel perform continuous
conversions in obtaining data from the assigned pin.

Due to the usage of interrupts for the buttons, the TIMER
channels are also set up to catch the button signal at any time of
the code’s operation. The TIMER channels as shown in figure
10 allow us to capture this data and enable the interrupts.

TABLE I: SPECIFIED EXPERIMENTAL PARAMETERS

Specific Experimental Requirements
Assigned ADC Channel AN5

ADC Resolution 10-bit
Bus Speed 6 MHz

The bus speed requirement of 6 MHz refers to the Esduino
clock speed of 6.25 MHz being modified. This is done through
creating and modifying the SetClk() function as shown in figure
9 above. First, CPMUPROT = 0 disables the clock speed write
protections. CPMUOSC = 0x80 sets the oscillator frequency or
clock reference of the Esduino to 8 MHz, and from here
CPMUREFDIV = 0x41 divides this reference frequency by 2
to get 4 MHz. From here, CPMUSYNR = 0x02 and
CPMUPOSTDIV = 0x03 both multiply and divide the
VCOCLK frequency in order to get the 6 MHz bus speed we
want. To end this function, we set CPMUPROT = 1 to enable
clock write protections.

When observing the data sheet of the accelerometer, we see
that the range of voltages that we can get from the
accelerometer is approximately 1.35 V – 2.0V. On the other
hand, the Esduino’s range of acceptable voltages is 0V to 3.3V.
We will also see later that in specific; a 0-degree angle is
represented by 1.65V while 1.35V to 1.65V represents -90 to 0
degrees, and 1.65V to 2.0V represents 0 to 90 degrees.
The datasheet of the accelerometer also states that the frequency
of operation is approximately 550 Hz. According to the Nyquist
rate, the appropriate sampling frequency would be equal or
greater than 2 times the input frequency. This relationship is
shown in figure 11 below.

𝑁𝑦𝑞𝑢𝑖𝑠𝑡	𝑅𝑎𝑡𝑒 ≥ 2 ∗ 𝐼𝑛𝑝𝑢𝑡	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
Figure 11: Nyquist Rate Relationship

 When calculating for this value using an input frequency of
approximately 550 Hz, we get a Nyquist frequency that must be
equal or greater to 1100 Hz. Therefore, the sampling period can
be calculated by doing the inverse of this value as T = 1/f, giving
as a sampling time of 0.001 seconds.

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 5

 As stated before, the application used to serially
communicate this data graphically is MATLAB. The rate at
which serial communication of the data is performed is known
as the baud rate, measured in bits per second. The baud rate is
dependent on the bus speed of operation. Therefore, we will
need to calculate and find an appropriate baud rate for serial
communication of our data. The equation to obtain the baud
divisor is shown in figure 12 below.

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 = 𝐵𝑢𝑠𝐶𝑙𝑜𝑐𝑘/(16 ∗ 𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒)
Figure 12: Baud Divisor Equation

The goal is to use the highest baud rate possible that is lower
than a 6% error margin. The different baud rates that we can use
are 2400, 4800, 9600, 19200, 38400, 57600, and 115200.
Calculations for a few of these baud rates are shown below.

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000

16 ∗ 115200 = 3.255

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000
16 ∗ 57600 = 6.510

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =
6000000
16 ∗ 38400 = 9.766

TABLE II: BAUD DIVISOR WITH BAUD RATES

Baud Rate Baud Divisor
2400 156.25
4800 78.125
9600 39.063
19200 19.531
38400 9.766
57600 6.510
115200 3.255

The baud divisor can only be a whole number, hence must be
rounded and recalculated to see if the given baud rate is less
than 6% error from the actual theoretical baud rate. These
calculations are done for the 3 highest baud rates below. As
said before, we are trying to achieve the highest baud rate
possible within the error margin.

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
𝐵𝑢𝑠	𝑆𝑝𝑒𝑒𝑑

𝐵𝑎𝑢𝑑	𝐷𝑖𝑣𝑖𝑠𝑜𝑟
16

Figure 13: Baud Rate Calculation

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

3
16 = 125000

𝐸𝑟𝑟𝑜𝑟 =
125000 − 115200

115200 ∗ 100 = 8.51%	

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

7
16 = 53571.4

𝐸𝑟𝑟𝑜𝑟 =
53571 − 57600

57600 ∗ 100 = 6.99%

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

6
16 = 62500

𝐸𝑟𝑟𝑜𝑟 =
(62500 − 57600)

57600 ∗ 100 = 8.51%	

𝐵𝑎𝑢𝑑	𝑅𝑎𝑡𝑒 =
6000000

10
16 = 37500

𝐸𝑟𝑟𝑜𝑟 =
37500 − 38400

38400 ∗ 100 = 2.34%

From the calculations above, we can see that a baud rate of
38400 gives us an error of 2.34%, hence satisfies the error
margin.
 The code will be implemented differently based on what
program is being used for the serial communication. This is due
to each program using a different terminator. The terminator is
an operator that tells the program where to separate certain
digits into separate values. MATLAB uses a “CR” terminator
to distinguish this operation. The bits containing the angle value
that we calculate will be serially communicated and represented
using our MATLAB program.

D. Computer
For this project, the MacBook Pro 2018 with touch bar. This

laptop contains 512GB flash memory, in addition to 8GB
memory capability. This laptop also has a 2.3 GHz Intel core i5
processor. This laptop also has Boot Camp installer that was
used to download Windows operating system in order to run the
CodeWarrior IDE. This laptop contains 4 thunderbolt ports;
therefore, an additional dongle was purchased in order to enable
USB port connections to the laptop. This dongle can be
purchased from Lention or Amazon for around $50 USD.

As shown in figure 6, the code on CodeWarrior first starts
with obtaining the value of the output voltage from the
accelerometer. From here, the arc sine value is calculating using
a reference zero voltage of 1.65V, a full-scale voltage of 3.3V,
and a sensitivity factor of 0.3. Linear approximation is then
used in order to calculate for the angle of inclination. From here,
this value is serially communicated through the USB serial port
identified as “COM3” which the MATLAB program reads. The
serial port of the device by going into settings, and to device
manager that shows the serial USB port that the Esduino is
using. The flowchart for the program on MATLAB that
connects to the serial port, obtains the angle value, and
graphically displays this value is shown below in figure 14.

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 6

Figure 14: MATLAB Serial Communication Process Flowchart

As shown, first the ‘instrfind’ MATLAB function is deleted

in order to prohibit the return of any serial objects or
instruments as an array. This is done as in the next line, we
connect to our specific serial port at the specified baud rate and
using the terminator option as discussed before, using the serial
function. A ‘while’ loop is then formed, which simply is one of
many forms to implement an infinite loop to continue the serial
communication of the data until the user specifically specifies
to end the transmission. The ‘while’ loop consists of an array
that holds the value of the angle that is then plotted against the
corresponding time. The data is sent serially one bit at a time
over the communication port. This operation continuously
occurs in real-time to give the user a graphical representation of
the inclination of the accelerometer.

III. EXPERIMENT AND RESULTS
In this section, we will observe the data-acquisition system

in operation and observe the role of all the components
discussed earlier. Each of these components will be validated
separately to ensure that the system is working correctly at each
stage of the process. This will also help in ensuring that each
component is working effectively and not resulting in any error
or deviation in our experimental results. First, we will validate
the input of the accelerometer to the system. From here, we will
validate the clock speed, delay function, analog-to-digital

convertor and the serial communication. After observing these
separate functions, we will observe the entire system working
to ensure the operation of the system.

A. Input
The first crucial component to validate is the input to the

system, being the accelerometer. The voltage outputs must be
accurate in order to obtain the correct inclination angle of the
device. In order to validate the accelerometer, we need to ensure
that there is no error with the internal function of the
accelerometer. This is done through connecting the
accelerometer to an oscilloscope to ensure that the output
voltages are theoretically correct at certain values.

First, the accelerometer is left at an inclination of zero
degrees. At this point, the output voltage should theoretically
be half of the full-scale voltage of the Esduino. In our scenario,
this would mean that the accelerometer should output a voltage
of 3.3/2 V = 1.65V, which is validated in figure 15 below.

Figure 15: Oscilloscope Reading at 0 Degree Inclination

 The exact reading that the oscilloscope is giving is 1.626V,
which is close enough to our theoretical assumption, and we can
attribute the slight deviation from 1.65V to experimental errors,
such as other factors influencing the accelerometers reading or
the device not being at exactly 0 degrees with the gravitational
surface when tested.
 Next, we need to ensure that the range of output voltages lie
within our assumptions that were derived from the datasheet of
the accelerometer. This is done by testing the accelerometer at
the maximum value, being 90 degrees. The oscilloscope
reading is shown in figure 16 below.

Figure 16: Oscilloscope Reading at 90 Degree Inclination

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 7

 The exact reading given by the oscilloscope is 1.974V at a
90-degree inclination, which is very close to the expected value
of 2.0V. Again, many experimental factors could have resulted
in the slight deviation as mentioned before. Finally, a value
within the range is tested at approximately 75 degrees, and the
output voltage given corresponds to what we would expect the
accelerometer to output. This is shown in figure 17 below.

Figure 17: Approximation Oscilloscope Reading Within Range

 From the oscilloscope readings shown and cross-referencing
these values with the theoretical values given on the ADXL337
datasheet, we can confirm that our accelerometer operates as
expected. This also helps validate the input to the data-
acquisition system to confirm that the values are correct and
within a small error margin.

B. Clock Speed and Delay Loop
As mentioned before, the assigned bus speed for our

configuration is 6 MHz. The setClk() function as previously
explained is used to configure the Esduino’s clock speed to our
preference. In other words, we modify the Esduino’s default
6.25 MHz clock speed to 6 MHz. To confirm that the clock
speed works accurately as expected, an oscilloscope is used
with only the delay function to ensure that the 1ms delay
function gives us 1ms as we expect. The oscilloscope reading
of the 1ms delay is shown in figure 18 below.

Figure 18: Oscilloscope Reading of Delay Function

 The oscilloscope reading shows a delay of 1.001 seconds
when the 1ms delay function is run 1000 times. Therefore, this
helps prove that the bus speed is configured correctly within
CodeWarrior and in the setClk() function specifically. This is
an important parameter to check as ensuring the delay function
can help us set the sampling rate according to the Nyquist rate,
and hence effectively sample the data of the inclination angle
through serial communication.

C. ADC System
The ADC system is verified through observing the data

plotted using MATLAB through the serial communication port.
The Esduino uses the successive approximation method in
order to convert the analog data from the accelerometer into a
digital value. This method is limited based on the number of
bits the ADC channel is configured at. Therefore, there will be
some error in the conversion, known as the quantization error.
The maximum quantization error can be calculated to ensure
that the values we plot are within an acceptable error margin.
The equation to calculate this error is shown in figure 19 and is
also commonly referred to as the smallest step size or the ADC
resolution between the theoretical and experimental results.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑢𝑙𝑙	𝑆𝑐𝑎𝑙𝑒	𝑉𝑜𝑙𝑡𝑎𝑔𝑒

2V
Figure 19: Quantization Error Equation

 N refers to the ADC resolution bits. In our experiment, we
have a full-scale voltage of 0.348V, which is found by finding
the difference between the maximum voltage value we found at
90 degrees, and the minimum voltage value found at 0 degrees,
which were found using the oscilloscope to be 1.974V and
1.626V respectively. with an ADC resolution of 10 bits.
Therefore, calculating for the maximum quantization error
gives us:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	(%)

=
1.974 − 1.626

2WX ∗ 100 = 0.034%

Therefore, the error margin for the ADC operation is
approximately 0.32%. This value is very low in comparison to
the other errors and deviations experienced in the experiment.
However, this error is caused from the internal ADC method of
the Esduino and hence cannot be improved any further without
changing the requirements of the project, such as the resolution.

D. Serial Communication
The final component that requires validation to ensure that the
entire system is working efficiently is the serial communication.
This is done through an application called RealTerm, that
connects to the serial communication port to ensure that the
values of the angles are bring transmitted correctly. The
transmission of data is also done in real-time, similar to
MATLAB. RealTerm has the option of setting the port and
effective baud rate, that we will first set to ‘COM3’ and a baud
rate of 38400 respectively. The output on RealTerm read by the
serial communication port is shown in figure 20 below.

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 8

Figure 20: RealTerm Output at Baud Rate of 38400

 To ensure that we have selected the correct serial
communication port, we will change the baud rate to 57600 and
observe the output of the angle and see if this data is transmitted
effectively. The RealTerm output reading of this is shown in
figure 21 below.

Figure 21: RealTerm Output at Baud Rate of 57600

 From the output shown above, we can confirm that the baud
rate that we have selected is correct. Using equations for the
baud divisor and baud rate as shown in figures 11 and 12 above,
we can calculate the baud divisor and baud rate error for each
possible baud rate. The calculations are summarized and shown
in table 3 below.

TABLE III: BAUD RATE CALCULATIONS WITH % ERROR

Baud Rate Baud Divisor
(Rounded)

Calculated
Baud Rate

Percent
Error

2400 156 2404 0.17%
4800 78 4808 0.17%
9600 39 9615 0.16%
19200 20 18750 2.34%
38400 10 37500 2.34%
57600 7 53571 6.99%
115200 3 125000 8.51%

 The highest baud rate that is within a 6% error must be
chosen for the serial communication. As calculated before,

using a baud rate of 38400 is proven to be the effective rate of
serial communication that reduces the error of the transmission
of data compared to other baud rates. Therefore, from our
calculations and the output observed on RealTerm, we can
confirm that the serial communication is working effectively.

E. Entire System
Now that we have confirmed all our separate components and

functions are working effectively with only slight deviations
from our result, we can test the entire data-acquisition system
as a whole. The hardware and setup of the entire system is
shown in figure 22 below. In addition, the graphical
representation of the angle is also shown in figure 23, proving
that the serial communication of the inclination angle is
working effectively.

Figure 22: Setup and Configuration of Esduino and Components

Figure 23: MATLAB Graphical Output of Inclination Angle

IV. DISCUSSION
As seen above, we have been able to produce a graphical

representation of the inclination angles given in real time. In
addition, we were also able to turn on the LED’s appropriately
depending on the value of the angle. One simple way to confirm

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 9

that the values are consistent between CodeWarrior and
MATLAB is to verify that the LED’s value of the angle
corresponds to the value of the angle that MATLAB outputs
graphically through the serial communication port. Another
verification method can be to observe the inclination angle of
the device with an external support, such as a protractor, and
from here compare the angle observed in relation to the
gravitational surface and what is plotted on MATLAB. Our
validation results showed that there is potential for a slight
deviation of approximately 3% from the value plotted, which
must also be taken into account to ensure that the reproduced
signal is correct.

Using a function generator along with an oscilloscope is also
an effective approach to determine if the reproduced signal is
correct. This is done through setting the function generator to
the correct peak to peak voltage that we determined
experimentally (1.65V to 2V full scale voltage) and by
connecting an oscilloscope to the output to determine if the
inclination angle is correct compared to the output on
MATLAB. However, from our MATLAB graph and
component validations, we can confirm that the reproduced
signal is correct with slight deviations that do not affect the
signal greatly and are within a 5% error margin.

We were able to overcome the Esduino microcontroller not
having any trigonometric functions through a linear
approximation approach using Desmos graphing software.
First, an equation is used in order to approximate the arcsine
value from the analog reading.

𝑎𝑟𝑐𝑠𝑖𝑛𝑒 =
𝑣𝑜𝑙𝑡𝑎𝑔𝑒	𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∗ 3.3

2WX − 1.626
0.31

Figure 25: Arcsine Approximation Equation

In this equation, the 3.3 represents the operating voltage of
3.3V, the 2^10 represents that the ADC is set at a 10-bit
resolution. The 1.626 value represents the zero-voltage value of
the accelerometer. Experimentally, as shown in section 3.1, we
found this value to be 1.626V although theoretically this value
is shown on the datasheet to be 1.65V. Lastly, the 0.31
represents the sensitivity factor of the accelerometer, that can
also be found on the datasheet to be 0.3, although
experimentally we found that a valuer of 0.31 is more effective
in accordance with the zero reference voltage we found.
Therefore, the output voltage of the accelerometer can help us
find the arcsine value of the angle using this equation.

As said before, due to the Esduino not providing any
trigonometric functions, we used a linear approximation
approach in order to find the angle value. This was done by
plotting the arcsine graph on Desmos, as shown below.

Figure 25: Desmos Graph of Arcsine Function

This graph shows a constant slope from (0,0) to (0.5,0.5).

From here, the remainder of the function was split up into
different sections depending on the slope of the line. Overall,
this function was split into 9 different regions which each
performed an approximation to get the value of the angle. For
example, a constant slope of 1 was shown in the first region.
Therefore, if the arcsine value was calculated to be 0.5, the
value would be multiplied by 60 to obtain an inclination angle
of 30 degrees. Cross referencing this value with the theoretical
calculation, we see that we also get 30 degrees. Therefore, the
linear approximation was found to be effective in giving us the
correct angle based on the arcsine value calculated.

As calculated earlier, the maximum quantization error is
dependent on the experimental full-scale voltage calculated in
addition to the ADC resolution, which in our case is 10 bits.
This calculation is shown in section 3.3, and again shown
below. We get a value of 0.034%, which shows that the
maximum quantization error is very low and a small factor in
deviating our angle results.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑢𝑙𝑙	𝑆𝑐𝑎𝑙𝑒	𝑉𝑜𝑙𝑡𝑎𝑔𝑒

2V

𝑀𝑎𝑥	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	(%) =
1.974	 − 1.626

2WX ∗ 100
= 0.034%

As previously calculated, the maximum baud rate that

satisfied a 6% error margin must be chosen as the standard
serial communication rate. By using the equations found in
figure 12 and 13, we found that the best baud rate used based
on our assigned bus speed of 6 MHz is 38400. The calculations
and errors of all the potential baud rate selections are shown in
table 3 in section 3.4. This serial communication rate was
verified afterwards using the RealTerm application that further
proved that our calculations were correct, as a baud rate greater
than 38400 did not accurately communicate the value of the
angle through serial communication.

After reviewing the entire system, the primary limitation on
the speed is the baud rate. As said before, the baud rate is the
rate at which each bit is transmitted per second through serial
communication. This was verified through performing a series
of calculations to determine the standard serial communication

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 10

rate, which we found to be 38400. In addition, increasing this
baud rate gives us an inaccurate output of the angle, which
further proves that the baud rate we selected was appropriate.
We found the selected baud rate to have a 2.3% error, which
can also attribute to the limitation or reduction in speed of the
serial communication.

The Nyquist rate states that the sampling frequency should
be at least equal to two times the input frequency from the
accelerometer, which on the datasheet is shown to be 550 Hz.
This relationship is also shown in figure 11 above. Therefore,
the sampling frequency should be 1100 Hz or slightly greater.
This is a crucial rule to follow when transmitting and plotting
the data of the angle as or else, there may be aliasing in the
signal. Aliasing may cause inaccurate results in the signal and
causes different signals to be identified as the same, which can
further increase errors or deviations. Due to the sampling rate,
the maximum frequency that can be used as an input is 550 Hz.
Any greater frequency from the input will cause aliasing and
inaccurate data.
 From this experiment, we can conclude that in general,
analog input signals with sharp transitions are not accurately
reproduced digitally. This is due to their being a lot of
fluctuations of the rising and falling edge of the signal’s waves.
We have also noticed that there are many factors that can
contribute to potential errors or delays in the plotting of the
graph. With sharp transitions, this can greatly affect the user’s
interpretation of the data and can hence lead to further
deviations in the data. Therefore, it is more accurate to recreate
shapes such as a sine wave, in comparison to a sawtooth or
square wave representation.
 There are also many areas of improvement for the
experiment. First, using interrupts is helpful in reducing the run-
time and processing time of the code which can be beneficial
when plotting real-time data and transmitting data at the
sampling rate. Secondly, the test apparatus can be improved by
being more precise with the placement of the accelerometer in
relation to the gravitational surface. It is very possible for the
accelerometer to be slightly tilted upward or downward on the
zero position, which can greatly affect results. As said before,
the Esduino uses successive approximation in order to get the
digital value from the ADC channel. This process is dependent
on the ADC resolution. Therefore, increasing the ADC
resolution can also help in getting more accurate values from
the analog to digital conversion. In addition, following the
Nyquist relationship helps in the sampling process of plotting
the serially transmitted data, hence ensuring that this
relationship is satisfied also greatly improves the results.

V. CONCLUSION
In this paper, we walked through how to create and

implement a data-acquisition system responsible for
graphically representing the inclination angle using an
accelerometer through serial communication. The system first
converted the analog signal of the acceleration into a digital
signal using ADC conversion from the Esduino, which was then
serially transmitted to MATLAB to plot the inclination angle
value. The system worked efficiently, and we see that the angle

of inclination is appropriately plotted in real-time, along with
the corresponding LED’s to the value of the angle turning on.
In addition, the buttons implemented through interrupts also
efficiently toggled the serial communication and changed the
display mode of the LED’s. As we continue to progress within
technological innovations and performance testing, systems
similar to the one implemented in this paper will be used more
commonly for various applications. Transferring data between
the real world and a PC is very efficient and with further
findings, can be further improved to reduce any deviations in
the process. Such a system can serve very useful in the real
world, such as in the orientation of any technological device to
meet the user’s point of view at any given time, or in real-time.
We further tested our components and system using an
oscilloscope to ensure the validity of the reproduced signal. As
time progresses, these systems will be more common in our
daily lives and both data-acquisition and ADC conversion can
help to serve as a positive influence in the quality of our life and
in the technological world.

Maaz Azam – azamm3 – McMaster University Winter 2019 – 2DP4 – Microcontrollers 11

REFERENCES
[1] Ni.com. (2019). What Is Data Acquisition? - National

Instruments. [online] Available at:
http://www.ni.com/data-acquisition/what-is/ [Accessed 7
Apr. 2019].

[2] Rudo, P. (2019). 6 Important Stages in the Data
Processing Cycle. [online] Enterprise Features. Available
at: http://www.enterprisefeatures.com/6-important-stages-
in-the-data-processing-cycle/ [Accessed 7 Apr. 2019].

[3] Analog.com. (2019). [online] Available at:

https://www.analog.com/media/en/technical-
documentation/application-notes/AN-1057.pdf [Accessed
7 Apr. 2019].

[4] Analog.com. (2019). [online] Available at:

https://www.analog.com/media/en/technical-
documentation/data-sheets/ADXL337.pdf [Accessed 7
Apr. 2019].

